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Escherichia coli strains mutant in the starvation gene cstC grow normally in a mineral salts medium but are
impaired in utilizing amino acids as nitrogen sources. They are also compromised in starvation survival, where
amino acid catabolism is important. The cstC gene encodes a 406-amino-acid protein that closely resembles the
E. coli ArgD protein, which is involved in arginine biosynthesis. We postulate that CstC is a counterpart of
ArgD in an amino acid catabolic pathway. The cstC upstream region contains several regulatory consensus
sequences. Both sS and s54 promoters are probably involved in cstC transcription and appear to compete with
each other, presumably to match cstC expression to the cellular amino acid catabolic needs.

Escherichia coli differentiates into a resistant cellular state in
response to starvation due to the expression of 30 to 80 star-
vation genes (12–14). We report here on the role of an E. coli
starvation gene, cstC (map position, 38.2 min) that we de-
scribed previously (2, 9).

Bacterial strains and plasmids used are listed in Table 1.
Cultures were grown in Luria-Bertani broth or in M9 supple-
mented with D-glucose as described previously (10). All exper-
iments were done at least twice.

cstC is involved in amino acid catabolism. The cstC-lacZ
transcriptional fusion strain, AMS96, demonstrated wild-type
growth in LB or glucose-M9 medium, but it was impaired in
using amino acids as sole nitrogen sources. While the wild type
had doubling times of 4.5 h with L-ornithine and 7.5 h with N-
a-acetyl-L-ornithine or L-arginine as nitrogen source, the dou-
bling time of the mutant in glucose-L-ornithine medium was
23 h, and it did not grow with L-arginine as nitrogen source.
The mutant was also impaired in starvation survival, where
amino acid catabolism is important (3): at 125 h after the ex-
haustion of ammonium from glucose-M9 medium, the wild-
type culture showed 60% viability, but AMS96 showed only 4%
viability.

To further explore if the cstC gene in fact had a role in
amino acid catabolism, the gene and contiguous region (Fig. 1)
were cloned from the Kohara E. coli miniset collection, us-
ing 1.6-kb PstI-BglII 32P-labeled fragment originally from

pAMC3 (2) as probe. The desired DNA was obtained from
phage 328 and cloned into pBluescript II KS(1), generating
pAMC162. Sequencing of the PstI and XmnI region (Fig. 1)
showed that the 59 end of the cloned fragment corresponded to
nucleotide (nt) 99 of the xthA gene (19), which is transcribed
divergently to cstC. A putative open reading frame (ORF)
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TABLE 1. E. coli strains and plasmids used
in this study

Strain or
plasmid Genotype Source or

reference

E. coli strainsa

K-12 Wild type (l2 F2) Laboratory stock; 2
MC4100 F2 araD139 rpsL150 D(argF-lac)U169

relA1 ptsF25 flbB5301 deoC1 rbsR
(thiA?)

Laboratory stock; 2

YMC18 K-12 strain 294 (endA1 thi-1 hsdR17
[rK

2 mK
1]) supE44 hutCKlebs

b

D(lac)U169 rpoN208::Tn10

23

AMS6 K-12 and D(lac)U169 21
AMS35 MC4100 cstC::Mu dX(lac Apr Tn9) 2
AMS96 AMS6 cstC::Mu dX(lac Apr Tn9) 2
AMS150 K-12 and rpoS::Tn10 15
AMS349 K-12 and cstC::kan This study
AMS351 AMS96 and rpoN208::Tn10 This study
AMS352 AMS96 and rpoS::Tn10 This study

Plasmids
pBluescript II

KS(1)
Stratagene, Inc.

pAMC3 pBW2, modified by deletion of the
anti-tet promoter (P1) region, with
an ;11.2-kb AMS35 PstI fragment
containing the cstC region

2

pAMC162 pBluescript II KS(1) with an ;4-kb
PstI-EcoRI fragment containing
the cstC region from the Kohara
miniset collection phage 328

This study

a Standard phage P1vir protocols were used to construct strains for this study.
b Mutation from Klebsiella.
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spanning nt 418 to 1635 (Fig. 1) exhibited a strong DNA
homology to E. coli N-a-acetylornithine-d-aminotransferase,
the product of the argD gene (map position, 75.1 min). The
derived amino acid sequence of the cstC ORF revealed a pro-
tein of 406 amino acids which, when shifted three residues
relative to ArgD, exhibited ca. 60% identity and 91% simi-
larity to the latter (Fig. 2). ArgD belongs to class III of the
pyridoxal phosphate (PLP)-dependent aminotransferases;
its putative cofactor binding site occurs at Lys255 (8). CstC
also contains a lysine at this position in the homology align-
ment (Fig. 2).

Phage Mu dX had inserted in strain AMS35 (and AMS96)
near the 39 end of the cstC gene (Fig. 1). As this may not have
generated a complete loss-of-function mutation, an additional
mutation was constructed by inserting a kanamycin (kan) cas-
sette just after Ala96 in the CstC polypeptide (Fig. 2), as de-
scribed previously (6); the Ala96 region is vital for the function
of amino acid aminotransferases, being involved in subunit
dimerization, and thus active-site formation, as well as PLP
binding (5). The resulting strain, AMS349, exhibited a pheno-
type similar to that of AMS96. We thus assume that both
AMS35 and AMS349 are loss-of-function mutants.

As opposed to the role for CstC in amino acid catabolism as
suggested by the above experiments, ArgD is involved in argi-
nine biosynthesis. However, many closely related enzymes
carry out similar biochemical reactions but with equilibria fa-
voring opposite directions, and given the phenotype of the cstC
mutants, we hypothesize that CstC may be a counterpart of

ArgD in a catabolic pathway for amino acids. Indeed, the E.
coli genome sequence in the cstC region (1), as well as bio-
chemical studies presented in an accompanying report (20)
indicate that cstC (astC [20]) is the first gene in a five-gene
operon (astCADBE). This operon encodes the ammonium-
producing arginine succinyltransferase (AST) pathway, which
probably catabolizes arginine and other amino acids.

The cstC upstream region contains several regulatory se-
quences. Computer analyses revealed several readily recogniz-
able consensus sequences upstream of the cstC ORF (Fig. 3):
two each for cyclic AMP-cyclic AMP receptor protein complex
(cAMP-CRP) and NRI binding sites, one for an integration
host factor binding site, and consensus sequences for three
promoters, s70, sS, and s54. The putative carbon and ammo-
nium starvation regulatory sites overlap, with the sS promoter
residing within the s54 promoter and the proximal cAMP-CRP
site (nt 107 to 123) located within the two NRI sites.

We used induction of the cst-lacZ fusion in appropriate mu-
tant backgrounds to assess the roles of sS and s54 in cstC ex-
pression. Under ammonium-sufficient growth conditions (i.e.,
with NH4

1 as nitrogen source), cstC was positively regulated
by sS, as its expression decreased about twofold in an rpoS
strain (AMS352) (Table 2), but its expression was not nega-
tively affected in an rpoN strain (AMS351). If anything, the
presence of s54 in the cells attenuated expression: b-galacto-
sidase production was moderately but reproducibly lower in
AMS351. Replacing NH4

1 with one of several amino acids
as nitrogen source (Table 2), thereby generating ammoni-

FIG. 1. The PstI-EcoRI fragment containing the cstC gene cloned from Kohara phage 328 in pAMC162. The diagram includes information derived from work
discussed in the text (the cstC start codon, the site of kan cassette insertion in AMS349 [Table 1], the Mu dX fusion joint, and the cstC translational stop codon).
Numbering is in relation to the cstC sequence deposited in GenBank (accession no. U90416); the PstI site is 127 nt upstream of the first nucleotide of this
sequence.

FIG. 2. FASTA (16) amino acid sequence alignment of the putative cstC ORF with ArgD. Boxes indicate identical residues; shaded residues indicate conservative
substitutions. Note that relative to ArgD, the cstC ORF is displaced three residues to the right. The asterisk over the lysines at positions 252 and 255 of the cstC ORF
and ArgD, respectively, denotes the putative PLP binding site.
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um-limited conditions, induced cstC expression, but the roles
of the two sigma factors were reversed, with s54 acting as
the positive regulator and sS attenuating expression. Thus,
strain AMS351 showed a 3-fold decrease whereas AMS352
showed a 2.5-fold increase in b-galactosidase production
under these conditions (Table 2). Qualitatively similar re-
sults were obtained during total ammonium starvation (data
not shown).

As amino acids are a valuable cellular resource, especially
under starvation conditions, a pathway like the AST pathway
must be carefully regulated, and the complex regulatory region
upstream of the cstC gene shows that this is indeed the case.

Primer extension start site analysis showed that both s54 and
sS promoters are used in cstC transcription (6a), and the fusion
studies discussed above show that when one of these two pro-
moters becomes dominant under a given condition, the oth-
er assumes an attenuating role. This competition may be de-
signed to accurately match the expression of the AST pathway
to the condition-specific needs of the cell for amino acid ca-
tabolism.
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